JIAICIS

COMMUNICATIONS

Published on Web 08/16/2002

Kanosamine Biosynthesis: A Likely Source of the Aminoshikimate Pathway’'s
Nitrogen Atom

Jiantao Guo and J. W. Frost*
Department of Chemistry, Michigan State Werisity, East Lansing, Michigan 48824

Received April 22, 2002

Many biologically active natural products including rifamycin, ~ Scheme 1 &b

mitomycin, and ansamitocin are derived from 3-amino-5-hydroxy- o Ry R 2 R
benzoic acid (AHBA, Scheme 1) by way of the aminoshikimate Qg O o ' )1“ Ho~ e
pathway! Floss and co-workers have demonstrated the role of HO® ,‘"'O'g;lo'gf—w'“ © gomne Hond Seom
4-amino-3,4-dideoxy-arabino-heptulosonic acid 7-phosphate HO  OH Ta N oM
; ; ; i HO OH

(amlnoDAHP, Schgme _1) in the amlnoshlklmate path\_/vay and Ry Ry=H UDP-6,6-Hy}glucose Ry Ra=H 66{"Hy-kanosamine
delineated the loci in thaf biosynthetic gene cluster required for Ry, Ra=D UDP-6,6-2Hz}-glucose Ry, Ra=D 6,6-2Ho]-kanosamine
biosynthesis of 3-amino-5-hydroxybenzoic atidecently, amino- o
DAHP was demonstrated to form #imycolatopsis mediterranei H,05PO H205PO HJ\(HRSP

Il-free | f -amino-3-d -phosph g ° HOu, S
cell-free lysate from 3-amino-3-deoxHructose 6-phosphate ‘h’ HOw OH —— o] -
(aminoF6P, Scheme 1) via the inferred intermediacy of 1-deoxy- ADP o’ oH HNT £ o HO\)OJ\/.C{H
L-imi throse 4-phosphate (iminoE4P, Scheméai ’ e

-imino-o-erythrose 4-phosphate (imino , Schem ipsyn- _ K6P aminoF6P S o
thesis of 3-amino-3-deoxy-glucose (kanosamine, Scheme 1) is OPOH,

. . . P , /\ H,03PO HO.
now examined as a possible source of the aminoshikimate pathway’s OH COH 0
nitrogen atom. HanPONX - HOw ~“‘2'c") H_f—’» OCOQH
- . . . . A 2

With identification of 3-amino-3-deoxyp-fructose 6-phosphate OH P, X HeN

as a precursor to 3-amino-5-hydroxybenzoic acid, attention turned (X =NH iminoE4p X =NHp aminoDAHP AHBA
X=0 E4P X=0H DAHP

to delineation of the source of this alkaloid. One natural product ) ) )
aConversions (genes): (a) see ref 5c; (b) aminoglucokinase; (c)

that, by combination of an isomerization and phosphorylation, could glucoisomerase: (d) transketolasieth): (€) aminoDAHP synthaseifH),

be a precursor to 3-amino-3-deomyfructose 6-phosphate was  paHP synthase droFF8R); (f) aminoshikimate pathway; (g) hydrolysis.
kanosamine (Scheme 1). Various microbes generate kanosaminéAbbreviations: AT(D)P, adenosiné-i(di)phosphate; K6P, kanosamine
as a biosynthetic end-prodicAs exemplified by the biosynthesis ~ 6-phosphate; aminoF6P, 3-amino-3-deaxfructose 6-phosphate, R5P,
of kanamycir?, kanosamine is also an intermediate en route to other P-ib0se 5-phosphate; S7igtsedoheptulose 7-phosphate; iminoE4P, 1-deoxy-

. 1-imino-p-erythrose 4-phosphate; E4Berythrose 4-phosphate;, fhor-
natural prodgcts. Thg POSS'b!“tY theref(?I:e needed to 'be explored ganic phosphate; aminoDAHP; 4-amino-3,4-dideoxgrabino-heptulosonic
that A. mediterraneimight similarly utilize kanosamine as a acid 7-phosphate; DAHP, 3-deoryarabino-heptulosonic acid 7-phosphate;
biosynthetic intermediate as well as a vehicle for incorporation of AHBA, 3-amino-5-hydroxybenzoic acid.

the nitrogen atom into the aminoshikimate pathway. Working

backward from the intermediacy of 3-amino-3-deaxjructose SChs’gez ) o o

6-phosphate, kanosamine 6-phosphate was first synthesized and o e ab >( 0, .0 «¢d >( 0,0

tested as a precursor to aminoDAHP. HOw / OH == /"0 [ )( - /0 / )(
D-Glucose was selectively protected and the resulting C-3 HO oH o O Ns O

hydroxyl group oxidized (Scheme 2). Subsequent diastereoselective o-glucose o RO

reduction provided for an overall net inversion of configuration at o >( 0.0 p o)

C-3. Activation of the C-3 hydroxyl group as a triflate ester followed - /0 / X — HOw / OH

by nucleophilic displacement with NaNntroduced the requisite HN O H.N  “OH

nitrogen atom at C-3. Reduction and subsequent deprotection gave g(R =H kanosamine

kanosamine. Hexokinase-catalyzed phosphorylation of kansoamine R=POH, KeP

employed citric acid as an activatoand afforded kanosamine aReactions: (a) acetone, ZnCHsPQy, 68%; (b) PDC, (CHCO)O,

6-phosphate in an overall yield of 43% from startimglucose. CHCl, reflux, 91%; (c) NaBH, EtOH/HO (9:1), 0°C, 90%; (d) (i)

. . . . . . (CRSOy)20, pyridine, CHCI,, —20 °C, quantitative, (i) Nal, DMF, 50
Initial attempts at the in vitro bioconversion of kanosamine SC, 92%: (€) LiAlH; ELO, 94%: () 2 N HCI, 25 °C, quantitative; (g)

6-phosphate into aminoDAHP focused on an assembled systemaTp, MgCh, hexokinase, citric acid, pH 8, 90%.

Kanosamine 6-phosphate;ribose 5-phosphate, and phospho-

enolpyruvate were incubated with yeast phosphoglucose isomeraseisomerase-generated 3-amino-3-deoxfructose 6-phosphate and
Escherichia coli tktAencoded transketola&&?andE. coli aroFBR- subsequent hydrolysis of 1-deoxy-1-imineerythrose 4-phosphate
encoded DAHP syntha$ecAlthough no aminoDAHP was detected ~ account for the formation of DAHP.The bioconversion of
(entry 1, Table 1), formation of 3-deoxy-arabino-heptulosonic kanosamine 6-phosphate was then repeated upon substitution of
acid 7-phosphate (DAHP) indicated that kanosamine 6-phosphateE. coli aroF"®R-encoded DAHP synthase (entry 1, Table 1) with
was a substrate for isomerase. The action of transketolase onA. mediterranei rifHencoded aminoDAHP synthase (entry 2, Table
1). Along with DAHP, formation of aminoDAHP was observed
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Table 1. Biosynthesis of AminoDAHP from Kanosamine 6-Phosphate and Kanosamine from UDP-Glucose

entry reaction conditions products® (yield,® %)

1 kanosamine 6-phosphate, R5P, PEP; yeast phosphoglucose isomerase (60. woiis)ktA DAHP (39)
transketolase (9 unfs E. coli AroFFBRDAHP synthase (660 unfis pH 7.3

2 kanosamine 6-phosphate, R5P, PEP; yeast phosphoglucose isomerase (0. @woiiS)ktA aminoDAHP (2); DAHP (30)
transketolase (9 unils A. mediterraneRifH aminoDAHP synthase (64 unfs pH 7.3

3 kanosamine 6-phosphate, R5P, PEPmediterranecell-free extract aminoDAHP (6); DAHP (20);
(DAHP synthase activity of 0.2 ufij; pH 7.3 AHBA (2); Tyr (3); Phe (2)

4 glucose 6-phosphate, R5P, PEP, glutamine, 4jp80s; A. mediterranetell-free extract DAHP (21)
(DAHP synthase activity of 0.2 uf); pH 7.3

5 UDP-6,6-fH;]-glucose, NAD, glutamineA. mediterranetell-free extract, pH 6.8 6,64f2]-kanosamine (5)

aTransketolase was assayed according to reP 8minoDAHP synthase was assayed as DAHP synthase activity according to feS&athe legend
to Scheme 1 for abbreviation$Yields aretH NMR yields of aminoDAHP, DAHP, and AHBA purified to homogeneity and dfrosine and -phenylalanine
purified to a binary mixture. Response factors and quantification of product concentrations were based on integration relative to 3-(yijpetpidsiate-
2,2,3,3-ds.

Incubation of 3-amino-3-deoxy-fructose 6-phosphate with cell-  Streptomyces kanamyceticfi@namycin), A. mediterranei(rifa-
free lysate ofA. mediterrane{ATCC 21789) has previously been  mycin)3 Streptomyces l&ndulae (mitomycin) and Actino-
reported to give higher yields of aminoDAHP than incubations synnema pretiosurfansamitociny.
employing the assembled bioconversion systeAccordingly,
reaction of kanosamine 6-phosphate vuithibose 5-phosphate and
phosphoenolpyruvate k. mediterranecell-free lysate led to higher
yields of aminoDAHP and formation of 3-amino-5-hydroxybenzoic
acid (entry 3, Table 1). As a control experimemtglucose
6-phosphatep-ribose 5-phosphate, and phosphoenolpyruvate were
incubated inA. mediterraneicell-free lysate with glutamine and
(NH4)>SO, as possible sources of nitrogen (entry 4, Table 1). No
aminoDAHP formation was observed.

Reaction of kanosamine with ATB;ribose 5-phosphate, and
phosphoenolpyruvate iA. mediterraneicell-free lysate did not
produce quantifiable levels of either aminoDAHP or DAHP. As a
consequence, attention turned to biosynthesis of kanosam#e in
mediterranei Kanosamine biosynthesis was first observed and
studied inBacillus pumilugformerly Bacillus aminoglucosidicys
in the 1960$% ¢ Incubation of UDP-[U¥C]-glucose inB. pumilus
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